Deciphering key intermediates
The identification of catalytic intermediates in the conversion of carbon dioxide is vital for improved catalyst design and optimization of structure–reactivity relationships, but remains elusive. Here, we report that intermolecular hydrogen bonding interactions between an epoxy alcohol, water and the catalyst structure are crucial towards the formation of a cyclic carbonate from carbon dioxide. A combination of multiple in situ and ex situ techniques including substrate labelling, kinetic studies, computational analysis, operando infrared spectroscopy and X-ray diffraction was applied to identify and support the structural connectivities of several previously unknown intermediates. An epoxy alcohol–water cluster formed by hydrogen bonding was identified as the initial intermediate able to trap CO2 and an elusive alkyl carbonate anion was also detected. The synergistic spectroscopic and computational analysis shown here offers a unique insight under operando conditions, as well as a useful analytical blueprint for key suggested intermediates in other mechanistically related CO2 conversion processes.
CC-BY-4.0
The original dataset source can be reviewed here
Please use this identifier to cite or link to this collection:doi:10.19061/iochem-bd-1-58
Please use this identifier to cite or link to this collection:doi:10.19061/iochem-bd-1-58
This dataset derived results are published in:
Manuscript title: Deciphering key intermediates in the transformation of carbon dioxide into heterocyclic products
Journal: Nature Catalysis
Collection's Items (Sorted by in order): 1 to 20 of 701
Discover
Subject
- 701 Alcohols
- 701 Aluminum
- 701 Carbon dioxide fixation
- 701 Cyclic carbonates
- 701 Epoxy-alcohols
- 701 Glycidol
- 701 Homogeneous catalysis
- 701 IR spectroscopy
- 701 NMR spectroscopy
- 701 Reaction mechanisms
Stoichiometry
- 187 C31H36AlN1O7
- 96 C30H36AlN1O5
- 55 C31H38AlN1O8
- 36 C4H6O4
- 35 C58H66Al2N2O10
- 32 C61H72Al2N2O12
- 26 C3H6O2
- 17 C4H5O4
- 16 C34H42AlN1O8
- 14 C32H39AlN1O8
- next >
Program name
- 701 Gaussian
Calculation type
Institution